1/21 ## <u>CII National Award for Environmental Best</u> <u>Practices – 2021</u> Panasonic Life Solutions India Pvt. Ltd. Haridwar, Uttarakhand Presenter - Kapil Kumar (Sr. Engineer) & Kamal Negi (Dy. Manager) **ANCHOR** **MAXIMISE YOUR POTENTIAL** Panasonic 1 ## **Selected Theme By CII** 2/21 ## **Best Environmental Initiatives** - 1. Urea Formaldehyde Waste Reduction Through 3R Technique From 24.27% to 23.23% per Month - 2. Reduction of Single Use Plastic Waste Through Lifecycle Assessment MAXIMISE YOUR POTENTIAL PLSIND copyright © 202 2 **B** ANCHOR | Issue | Cause | Implement
Countermeasure | Before | After | Status | |--|--|--|---|---|--------| | Wastage
due to Spot
Defect | Metal/Magnet Parts
In Urea Raw
Material Supplier
End | Prevention-Implement Magnet At R/M Feeding Box Permanent Countermeasure: C/M-1 Supplier Change Beads Hardness 6.8 MOH Scale to 9 MOH Scale C/M-2 Supplier Change Grinder Blade Hardness From 225 to 352 | R/M Box Without Magnet Grinder Blade Beads | R/M Box With Magnet Grinder Blade Beads | Done | | Wastage Due
to Short
Molding
Defect | Raw Material Not
Proper Flow From
Spacer Due to Less
Hole Dia. of
Spacer | Increase Spacer Hole Dia. From
15 mm to 20 mm | Before-Dia-15 mm | After- Dia-20 mm | Done | | Wastage Due
to Excess
Flash | Raw Material
Density Variation | Standardize the Density of Both
Supplier :
Density Observed Supplier A
0.76 to 0.82 gm/ml Supplier B
0.81 TO 0.89 gm/ml | 0.76 to 0.89 gm/ml | As per IS 2221:1962
Standardize Density 0.80±0.03
gm/ml | Done | | Challenges Faced & Brief of Countering 6/21 | | | | | | | |---|---|--|--|---|---|--| | S. No. | Technical Challenges | Administrative
Challenges | Maintenance
Challenges | Mitigation Measures | Results | | | 1 | 1- How Many Gauss Magnet
used to Catch Metal Parts
From R/M
2- How We Standardize the
Harness of Beads and Grinder
Blade at Supplier end | 1- What is the Cost of Magnet
and how much Budget required
to Implement in all M/C
2- High cost of Beads and
Grinder Blade | 1- Frequency of Magnet Preventive Maintenance /Replacement 2- Frequency of Grinder Blade and Beads Preventive Maintenance | Trial on different Gauss
magnet Bead, Grinder Blade
& finalize based on Effectives,
Cost, Quality and Durability.
Maintenance Frequency also
Standardized | Raw Material
Quality Improve
and Rejection
Reduce | | | 2 | 1- How We Standardize
Increase Hole Dia. 15 to 20
mm | 1- Modification Cost much
higher (Approx. 2.5 Lac by
outside Vendor) | 1- Frequency of
Spacer Preventive
Maintenance | 1-Spacer Hole dia. finalize
based on Low Rejection and
set the Maintenance
Frequency after trial and
verification of shelf Life of
Spacer Wear Out
2-Modification done by
Inhouse Maintenance Team | Spacer Hole Dia.
Standardize
and Reduce
Short Molding
Wastage | | | 3 | 1- How we calculate Density
of R/M as per Standard and
how we Standardize the
Density at Supplier End | 1- Requirement of Instrument
for Density Measurement
2- Improvement at Supplier End
in Current Covid-19 Condition | 1- Frequency of
Density Instrument
Preventive
Maintenance
/Calibration | 1- Standardize R/M Density
0.80±0.03 gm/ml as per IS
2221:1962 & Online Meeting
with Supplier to Maintain
Density as per Standard | Raw Material
Quality
improved at
Supplier end
and Flash
Wastage Reduce | | | £Α | ■ ANCHOR MAXIMISE YOUR POTENTIAL Panasonic | | | | | | | Countermeasure & Implementation Against -Single Use Plastic Wastage 12/21 | | | | | | |---|---|--|---|--|--------| | Issue | Cause | Implement
Countermeasure | Before | After | Status | | Use of large
size
polybag for
small parts
packing | Increase the plastic waste quantity after use | Small and Big size Corrufabricated box use for packing of switch, socket, dimmer and other semi finish goods (non- woven bag and box are multiple time usage due to its long life) | Switch and other small parts pack in polybag for transfer | Parts packing in Corrufabricated Box | Done | | Use of
small size
polybag for
cover GINA
plates | Increase the plastic waste quantity after use | Non-Woven bag & Cover
Bin use to replace Polybag
to keep free from
scratches and damage | Cover Plates pack in polybag | GINA Plates packing in Non
Woven bags | Done | | ♣ ANCHOR MAXIMISE YOUR POTENTIAL Panasonic | | | | | | | | Challenges Faced & Brief of Countering 13/21 | | | | | | |--------|--|---|---|--|--|--| | S. No. | Technical Challenges | Administrative
Challenges | Maintenance
Challenges | Mitigation Measures | Results | | | 1 | Plastic Waste Reduction: Many type of products are manufactured hence different sizes of box or tray required to keep products | Check alternative of Polybag
packing to reduce plastic waste
as per Govt. notification | Different type of Box
search for product and
trial done. Check
Material feasibility on
various aspects. | Brainstorming with team and
finalize non-woven bags to
keep plates and box for other
small products | Alternative of
Polybag
identified | | | 2 | Use of Alternative material with long life cycle: Non availability of cotton bags and Soft material box in market as per our requirement | What is the Cost of alternative packing and how much Budget required to Implementation | Material replacement in alternative packing | Visit of suppliers and develop
sample as per our
requirement and standard | Trial of packing
completed, and
sample finalized | | | 3 | Scratch / Damage free
product:
Alternative material for
keeping products required
scratch or damage free | Follow Work instructions. Awareness training to all employees regarding use of Non-woven bag and Corrufabricated box in place of Polybag. | Safe transfer of products in other departments | Vendor developed for supply
of Non-woven bags and
Corrufabricated box and
replaced the packing for
transfer in other departments | Polybag
replaced | | | ι Al | S ANCHOR MAXIMISE YOUR POTENTIAL Panasonic | | | | | | | Priority Plans for +1 year and +2 year 18/21 | | | | | | |--|---|---|--|-----------|--| | S. No. | Project Title | Approach | Resource Required | Timeline | | | 1 | Reduce Wastage of Urea Formaldehyde Raw Material from 23.23% to 19.23% | Waste Reduction | Infrastructure and Technology | 2021-2023 | | | 2 | Reuse 30% Scrap oil in Forming Machine | Reuse and Recycle | Feasibility study by Expert | 2021-2022 | | | 3 | Reduction of Hazardous waste generation 2% by 3R technique | Waste Reduction | Infrastructure and Technology | 2021-2022 | | | 4 | Reduce Water Consumption 5% by adopting advance water saving techniques recommended in CII Water audit | Natural Resource Saving | Infrastructure and Technology | 2021-2022 | | | 5 | Reuse old Metal scrap for Development of New Molds | Reuse and Recycle | Infrastructure and
Technology & Feasibility
Study done | 2021-2023 | | | 6 | Energy consumption and CO2 emission reduction (8%) by Utilization of Renewable Energy | Energy Conservation | Infrastructure and Technology | 2021-2022 | | | 7 | Reduce Energy Consumption & CO2 emission (1%) by Adopting Godrej IFC Controller for reduce Loading Time of air compressor | New Process & Technology
Equipment's | Technical & Commercial
Working Completed | 2021-2022 | | | ANCHOR MAXIMISE YOUR POTENTIAL Panasonic | | | | | | ## **Major Learning From Projects** 19/21 - 1- Deep understanding of waste management system of plant & conversion it into resources. - 2- Strengthening of Input waste segregation system. - 3- Better utilization of waste collection system and resources. - 4- Elimination of Non-value added activities. - 5- Process flow of waste in micro level. - 6- The capital cost reduction because the project was developed In House. - 7- Learned systematic approach towards improvements for environment saving. - 8- Awareness of Plastic Waste Management Rule. - 9- Enhance cost consciousness among team. - 10- Culture of Environment Improvement through Sustainable Activities. DOTE LELA **ANCHOR** **MAXIMISE YOUR POTENTIAL** **Panasonic** 19 **Panasonic** Thanks Panasonic Life Solutions India Pvt. Ltd. **MAXIMISE YOUR POTENTIAL** 21 **MANCHOR**